Pusat Informasi
Tampilkan postingan dengan label Kimia. Tampilkan semua postingan
Tampilkan postingan dengan label Kimia. Tampilkan semua postingan

Rabu, 28 November 2012

Perbandingan Sifat Senyawa Ion dan Kovalen

Perbandingan Sifat Senyawa Ion dan Kovalen – Oleh karena ikatan ion dan ikatan kovalen berbeda dalam proses pembentukannya maka senyawa yang dibentuknya juga memiliki sifat-sifat fisika dan kimia yang berbeda. Berikut ini akan dibahas beberapa perbedaan sifat fisika senyawa ion dan senyawa kovalen, seperti kemudahan menguap (volatile), daya hantar listrik, dan kelarutan.
1. Kemudahan Menguap
Jika di dapur terdapat cuka (senyawa kovalen) dan garam dapur (senyawa ion), senyawa mana yang akan tercium baunya? Tentu yang tercium adalah cuka. Mengapa garam dapur tidak tercium baunya? Jika Anda merasakan bau sesuatu, berarti ada gas atau uap dari suatu zat yang masuk ke hidung Anda. Uap tersebut tentu berasal dari zat yang ada di sekitar Anda. Jika suatu zat berwujud padat atau cair tercium baunya, berarti zat tersebut mudah menguap atau memiliki titik didih relatif rendah pada tekanan normal. Pada kasus tersebut, cuka mudah menguap dibandingkan garam dapur. Titik didih cuka 119°C dan garam dapur 1.517°C. Kemudahan menguap dari suatu zat berhubungan dengan gaya tarik antarmolekul.
Gaya tarik antarmolekul harus dibedakan dengan ikatan antaratom dalam molekul. Gaya tarik antarmolekul adalah antaraksi antarmolekul yang berdampak pada wujud zat bersangkutan, sedangkan ikatan antaratom adalah antaraksi antara atom-atom yang membentuk molekul atau senyawa.
Gaya tarik antarmolekul dalam senyawa kovalen relatif lemah dibandingkan senyawa ion. Akibatnya, senyawa kovalen pada umumnya mudah menguap dibandingkan senyawa ion, kecuali senyawa kovalen yang membentuk jaringan raksasa, seperti intan dan grafit. Kemudahan menguap dari senyawa kovalen banyak dimanfaatkan sebagai parfum atau deodorant. Sejumlah kecil senyawa kovalen yang dicampurkan ke dalam produk komersial memberikan bau yang harum. Gambar 3.14 dan Gambar 3.15 menunjukkan contoh-contoh produk komersial yang mengandung senyawa kovalen.
 Produk-produk komersial yang mengandung senyawa kovalen
Gambar 3.14 Produk-produk komersial yang mengandung senyawa kovalen.
Senyawa kovalen banyak diaplikasikan dalam produk kosmetik.
Gambar 3.15 Senyawa kovalen banyak diaplikasikan dalam produk kosmetik.
2. Daya Hantar Listrik
Logam dapat menghantarkan arus listrik disebabkan oleh elektronelektronnya bergerak bebas di seluruh kisi logam. Apakah senyawa ion dan senyawa kovalen dapat menghantarkan arus listrik? Untuk dapat menjawab pertanyaan tersebut, Anda dapat mempelajari kegiatan penyelidikan berikut.
Serbuk NaCl dimasukkan ke dalam cawan pijar dan dihubungkan dengan alat uji hantaran listrik. Berdasarkan penyelidikan, diperoleh data sebagai berikut.
1. Dalam wujud padat, senyawa ion tidak dapat menghantarkan listrik, tetapi dalam wujud cair (meleleh) dapat menghantarkan arus listrik.
2. Senyawa kovalen, baik dalam keadaan padat maupun cairan tidak dapat menghantarkan arus listrik. Mengapa terjadi gejala seperti itu?
Dalam bentuk padatan, senyawa ion membentuk kisi-kisi kristal yang kaku. Dalam hal ini, kation dan anion berantaraksi sangat kuat satu dan lainnya sehingga tidak dapat bergerak bebas. Oleh karena kation dan anion tidak dapat bergerak melainkan hanya bergetar di tempat, akibatnya tidak ada spesi yang dapat menghantarkan arus listrik. Ketika senyawa ion dilelehkan, antaraksi antara kation dan anion melemah dan dapat bergerak lebih leluasa. Akibatnya, jika arus listrik dilewatkan, ion-ion tersebut dapat menghantarkan arus listrik dari potensial tinggi ke potensial rendah. Pada senyawa kovalen, baik bentuk padatan maupun cairannya bersifat netral. Artinya, tidak terjadi pemisahan atom-atom membentuk ion yang bermuatan listrik, melainkan tetap sebagai molekul kovalen. Oleh karena dalam senyawa kovalen tidak ada spesi yang bermuatan listrik maka arus listrik yang dikenakan pada senyawa kovalen tidak dapat dialirkan.
3. Kelarutan
Bagaimana kelarutan senyawa kovalen dan senyawa ion di dalam pelarut tertentu? Untuk mengetahui kelarutan senyawa-senyawa itu, Anda dapat mempelajari penyelidikan berikut. Setiap tiga macam zat terlarut, NaCl, naftalena, dan gula dimasukkan pada tiga macam pelarut, misalnya air, alkohol, dan benzena sehingga diperoleh 9 macam larutan.
Berdasarkan hasil penyelidikan diketahui bahwa:
1. senyawa NaCl (senyawa ion) larut dalam pelarut air, tetapi tidak larut dalam pelarut organik seperti alkohol dan benzena;
2. naftalena larut dalam benzena, tetapi tidak larut dalam air maupun alkohol;
3. gula pasir larut dalam air dan alkohol, tetapi tidak larut dalam pelarut benzena.
Apa yang dapat Anda simpulkan tentang data tersebut? Bagaimana menjelaskan fakta tersebut? Pada umumnya, senyawa ion tidak larut dalam pelarut organik, tetapi larut dalam air walaupun ada juga yang kurang bahkan tidak larut dalam air.
Mengapa gula pasir (C12H22O11) larut dalam air dan alkohol, tetapi tidak larut dalam benzena, sedangkan naftalena larut dalam benzena, tetapi tidak larut dalam air maupun alkohol? Gula pasir dan naftalena, keduanya senyawa kovalen. Bedanya, gula pasir merupakan senyawa kovalen polar, sedangkan naftalena kovalen murni (nonpolar). Selain itu, air dan alkohol juga polar, sedangkan benzena nonpolar. Berdasarkan uraian tersebut, dapat disimpulkan bahwa pada umumnya senyawa kovalen polar akan larut dalam pelarut polar, sedangkan senyawa kovalen nonpolar akan larut dalam pelarut yang juga nonpolar. Alkohol yang bersifat kovalen polar akan larut dalam air yang juga bersifat polar dan alkohol tidak akan larut dalam pelarut benzena. Perbedaan utama antara senyawa ion dan senyawa kovalen dapat dilihat pada Tabel 3.5.
No Sifat-sifat fisika Senyawa ion Senyawa kovalen
1 Titik didih dan titik Leleh Tinggi Rendah
2 Konduktivitas listrik Sebagai konduktor dalam bentuk lelehan
atau larutan dalam air
Bukan konduktor dalam setiap keadaan
3 Kelarutan dalam air Umumnya larut Senyawa kovalen polar
4 Kelarutan dalam pelarut polar Tidak larut Umumnya larut dalam air dan pelarut polar
5 Kelarutan dalam pelarut nonpolar Tidak larut Senyawa kovalen nonpolar umumnya larut



Sifat Fisik Logam

Sifat Fisik Logam – Logam dan bukan logam membentuk ikatan ion, bukan logam dan bukan logam membentuk ikatan kovalen. Ikatan apa yang terjadi jika atom logam dan atom logam berikatan? Atom logam dan atom logam membentuk kristal logam. Kristal logam yang Anda lihat sehari-hari, seperti logam besi, tembaga, dan aluminium memiliki ikatan logam pada atom-atomnya.
Ikatan pada logam berbeda dengan ikatan kimia lainnya sebab elektron-elektron dalam kristal logam bergerak bebas. Berikut ini dipaparkan sifat-sifat fisik logam.
1. Teori Lautan Elektron
Terdapat beberapa teori yang menerangkan ikatan pada logam, di antaranya adalah teori lautan elektron dan teori pita. Khusus untuk teori pita tidak dibahas di sini sebab memerlukan pengetahuan tentang ikatan kovalen dengan pendekatan teori Mekanika Kuantum. Teori ikatan logam kali pertama dikembangkan oleh Drude (1902), kemudian diuraikan oleh Lorentz (1916) sehingga dikenal dengan teori elektron bebas atau teori lautan elektron dari Drude-Lorentz. Menurut teori ini, kristal logam tersusun atas kation-kation logam yang terpateri di tempat (tidak bergerak) dikelilingi oleh lautan elektron valensi yang bergerak bebas dalam kisi kristal (perhatikan Gambar 3.7). Ikatan logam terbentuk antara kation-kation logam dan elektron valensi.
Kation-kation logam yang kaku dikelilingi lautan elektron valensi yang bergerak bebas.
Gambar 3.7 Kation-kation logam yang kaku dikelilingi lautan elektron valensi yang bergerak bebas.
Elektron-elektron valensi logam bergerak bebas dan mengisi ruang-ruang di antara kisi-kisi kation logam yang bermuatan positif. Oleh karena bergerak bebas, elektron-elektron valensi dapat berpindah jika dipengaruhi oleh medan listrik atau panas.
Apakah Anda percaya dan yakin bahwa teori ini dapat diterima kebenaranya? Tentu Anda tidak akan percaya begitu saja jika tidak ada bukti. Suatu teori dapat diterima jika teori itu mampu menjelaskan gejala atau fakta secara sederhana.
2. Sifat Mengkilap Logam
Fakta menunjukkan bahwa logam mengkilap. Bagaimana teori di atas menjelaskan fakta ini? Menurut teori Drude-Lorentz, jika cahaya tampak (visible) jatuh pada permukaan logam, sebagian elektron valensi logam akan tereksitasi. Ketika elektron yang tereksitasi itu kembali ke keadaan dasar akan disertai pembebasan energi dalam bentuk cahaya atau kilap. Peristiwa ini menimbulkan sifat mengkilap pada permukaan logam. Apakah penjelasan ini dapat diterima?
3. Konduktor Listrik dan Panas
Semua logam bersifat konduktor (penghantar) listrik dan panas yang baik. Bagaimana teori tersebut menjelaskan fakta ini? Daya hantar listrik pada logam disebabkan oleh adanya elektron valensi yang bergerak bebas dalam kristal logam. Jika listrik dialirkan melalui logam, elektron-elektron valensi logam akan membawa muatan listrik ke seluruh logam dan bergerak menuju potensial yang lebih rendah sehingga terjadi aliran listrik dalam logam. Jika sejumlah kalor (panas) diserap oleh logam, elektron-elektron valensi logam akan bergerak lebih cepat dan elektron-elektron tersebut membawa sejumlah kalor yang diserap. Akibatnya, kalor dapat didistribusikan oleh logam ke seluruh kristal logam sehingga logam menjadi panas.
4. Lentur (Tidak Kaku)
Logam memiliki sifat lentur (mudah ditempa, dibengkokkan, tetapi tidak mudah patah). Bagaimana fakta ini dapat dijelaskan? Kisi-kisi kation bersifat kaku (tetap di tempat), sedangkan elektron valensi logam bergerak bebas. Jika logam ditempa atau dibengkokkan terjadi pergeseran kation-kation, tetapi pergeseran ini tidak menyebabkan patah karena selalu dikelilingi oleh lautan elektron. Sebagai pembanding, tinjaulah kristal ion, misalnya NaCl. Dalam kristal NaCl, kisi kation maupun elektron valensi tidak dapat bergerak (berada pada posisinya).
Pada saat kristal NaCl ditekan, terjadi pergeseran kisi. Kisi-kisi kation akan bersinggungan dengan kisi-kisi kation lainnya sehingga terjadi tolakmenolak (perhatikan Gambar 3.12). Tolakan antarkisi ini menimbulkan perpecahan antarkisi, yang akhirnya kristal akan pecah menjadi serbuk
Kristal ion jika ditempa akan pecah
Gambar 3.12 Kristal ion jika ditempa akan pecah.




Pengertian dan Pengukuran Suhu

Pengertian dan Pengukuran Suhu- Anda akan merasakan panas jika berada dekat dengan api yang menyala. Begitu pula jika Anda memanaskan sebuah logam pada api yang menyala, Anda akan merasakan logam tersebut menjadi panas dan mungkin Anda tidak sanggup memegangnya. Mengapa dapat terjadi perpindahan panas, sedangkan Anda tidak menyentuh sumber panasnya tersebut? Kejadian ini dapat juga disebut sebagai perpindahan kalor yang memiliki arti dapat menghantarkan dan menyerap energi. Perubahan wujud zat sering terjadi pada kehidupan sehari-hari dan mungkin sering Anda jumpai. Ketika sebuah es dipanaskan, es tersebut akan berubah wujudnya menjadi air. Begitu pula jika air didinginkan pada sebuah lemari es, air tersebut akan berubah wujudnya menjadi es. Tahukah Anda, mengapa dapat terjadi perubahan wujud seperti itu?
A. PENGERTIAN SUHU
Jika kita membahas tentang suhu suatu benda, tentu terkait erat dengan panas atau dinginnya benda tersebut. Dengan alat perasa, kita dapat membedakan benda yang panas, hangat atau dingin. Benda yang panas kita katakan suhunya lebih tinggi dari benda yang hangat atau benda yang dingin. Benda yang hangat suhunya lebih tinggi dari benda yang dingin. Dengan alat perasa kita hanya dapat membedakan suhu suatu benda secara kualitatif. Akan tetapi di dalam fisika kita akan menyatakan panas, hangat, dingin dan sebagainya secara eksak yaitu secara kuantitatif (dengan angka-angka). Sangatlah sulit untuk memberikan definisi temperatur berdasarkan konsep yang umum digunakan, seperti pada besaran lain. Secara sederhana suhu didefinisikan sebagai derajad panas dinginnya suatu benda. Namun demikian, Anda dapat menggunakan adanya kesepadanan (equality) perubahan temperatur terhadap perubahan sifat lain dari suatu benda. Temperatur dapat didefinisikan sebagai sifat fisik suatu benda untuk menentukan apakah keduanya berada dalam kesetimbangan termal. Dua buah benda akan berada dalam kesetimbangan termal jika keduanya memiliki temperatur yang sama. Ada beberapa sifat benda yang berubah apabila benda itu dipanaskan, antara lain adalah warnanya, volumnya, tekanannya dan daya hantar listriknya. Sifat-sifat benda yang berubah karena dipanaskan disebut sifat termometrik. Suhu termasuk besaran pokok dalam fisika yang dalam S.I. bersatuan Kelvin.
B. Alat Ukur Suhu
Apabila dua benda berada dalam kesetimbangan termal dengan benda ketiga maka keduanya berada dalam kesetimbangan termal. Pernyataan seperti ini dikenal sebagai hukum ke nol termodinamika, yang sering mendasari pengukuran temperatur. Materi mengenai termodinamika akan Anda pelajari lebih mendalam di Kelas XI. Berdasarkan prinsip ini, jika Anda ingin mengetahui apakah dua benda memiliki temperatur yang sama maka kedua benda tersebut tidak perlu disentuh dan diamati perubahan sifatnya terhadap waktu, yang perlu dilakukan adalah mengamati apakah kedua benda tersebut, masing-masing berada dalam kesetimbangan termal dengan benda ketiga? Benda ketiga tersebut adalah termometer. Benda apapun yang memiliki sedikitnya satu sifat yang berubah terhadap perubahan temperatur dapat digunakan sebagai termometer. Sifat semacam ini disebut sebagai sifat termometrik (thermometric property). Senyawa yang memiliki sifat termometrik disebut senyawa termometrik. Temperatur zat yang diukur sama besarnya dengan skala yang ditunjukkan oleh termometer saat terjadi kesetimbangan termal antara zat dengan termometer. Jadi, temperatur yang ditunjukkan oleh termometer sama dengan temperatur zat yang diukur. Zat cair yang umum digunakan dalam termometer adalah air raksa. Hal ini dikarenakan air raksa memiliki keunggulan dibandingkan zat cair lainnya. Keunggulan air raksa dari zat cair lainnya, yaitu
  1. dapat menyerap panas suatu benda yang akan diukur sehingga temperatur air raksa sama dengan temperatur benda yang diukur,
  2. dapat digunakan untuk mengukur temperatur yang rendah hingga temperatur yang lebih tinggi karena air raksa memiliki titik beku pada temperatur –39°C dan titik didihnya pada temperatur 357°C,
  3. tidak membasahi dinding tabung sehingga pengukurannya menjadi lebih teliti,
  4. pemuaian air raksa teratur atau linear terhadap kenaikan temperatur, kecuali pada temperatur yang sangat tinggi, dan
  5. mudah dilihat karena air raksa dapat memantulkan cahaya.
Selain air raksa, dapat juga digunakan alkohol untuk mengisi tabung termometer. Akan tetapi, alkohol tidak dapat mengukur temperatur yang tinggi karena titik didihnya 78°C, namun alkohol dapat mengukur temperatur yang lebih rendah karena titik bekunya pada temperatur –144°C. Jadi, termometer yang berisi alkohol baik untuk mengukur temperatur yang rendah, tetapi tidak dapat mengukur temperatur yang lebih tinggi.
C. Skala pada Beberapa Termometer
Ketika mengukur temperatur dengan menggunakan termometer, terdapat beberapa skala yang digunakan, di antaranya skala Celsius, skala Reamur, skala Fahrenheit, dan skala Kelvin. Keempat skala tersebut memiliki perbedaan dalam pengukuran suhunya. Berikut rentang temperatur yang dimiliki setiap skala.
a. Termometer skala Celsius
Memiliki titik didih air 100°C dan titik bekunya 0°C. Rentang temperaturnya berada pada temperatur 0°C – 100°C dan dibagi dalam 100 skala.
b. Temometer skala Reamur
Memiliki titik didih air 80°R dan titik bekunya 0°R. Rentang temperaturnya berada pada temperatur 0°R – 80°R dan dibagi dalam 80 skala.
c. Termometer skala Fahrenheit
Memiliki titik didih air 212°F dan titik bekunya 32°F. Rentang temperaturnya berada pada temperatur 32°F – 212°F dan dibagi dalam 180 skala.
d. Termometer skala Kelvin
Memiliki titik didih air 373,15 K dan titik bekunya 273,15 K. Rentang temperaturnya berada pada temperatur 273,15 K – 373,15 K dan dibagi dalam 100 skala.
Jadi, jika diperhatikan pembagian skala tersebut, satu skala dalam derajat Celsius sama dengan satu skala dalam derajat Kelvin, sementara satu skala Celsius kurang dari satu skala Reamur dan satu skala Celsius lebih dari satu skala Fahrenheit. Secara matematis perbandingan keempat skala tersebut, yaitu sebagai berikut.
img1
 img2
 Gambar 7.2 Perbandingan empat skala termometer.
Contoh Soal
1. Misalkan Ucok membuat sebuah termometer yang disebut dengan termometer X. Pada termometer ini air membeku pada 0°X dan air mendidih pada 150°X. Bagaimanakah hubungan termometer ini dengan termometer dalam skala Celsius?
Jawab
Pada termometer X, rentang temperatur yang dimilikinya, yakni dari 0°X – 150°X sehingga skala pada termometer ini dibagi dalam 150 skala. Perbandingan antara termometer X dan termometer Celsius, yakni
( C – 0)/ 100 =( X – 0 / )150
ToC = (100/150)ToX = (2/3)ToX
Jadi, hubungan antara termometer ini dengan termometer Celsius adalah ToC = (100/150)ToX = (2/3)ToX
2. Suhu sebuah benda 80oC nyatakan suhu benda tersebut dalam derajat Reamur dan derajat Fahrenheit.
Penyelesaian:
Diketahui: t = 80oC
Ditanya: a) oR = …?
b) oF = …?
Jawab :
a) C: R = 5: 4 80: R = 5: 4
5 R = 320
R = 64oR
Jadi 80oC = 64oR
b) C: (F – 32) = 5: 9 80: (F – 32) = 5: 9
5(F – 32) = 720
5F – 160 = 720
5F = 880
F = 176
Jadi 80oC = 176oF
3. Termometer Celcius dan Reamur digunakan untuk mengukur suhu suatu benda ternyata jumlah skala yang ditunjukkan oleh kedua termometer = 90o. Berapa oC dan oR suhu benda tersebut?
Penyelesaian:
Diketahui: C + R = 90o
Ditanya: t dalam oC dan oR
Jawab :
C + R = 90
R = 90-C
C: R = 5 : 4
C: (90 – C) = 4C
450 – 5C = 4C
450 = 9C
C = 50
R = 90 – C
R = 90 – 50 = 40
Jadi suhu benda tersebut: 50oC dan 40oR
3. Sebuah termometer x setelah ditera dengan termometer Celcius di dapat 40oC = 80ox dan 20oC = 50ox. Jika suhu sebuah benda 80oC, maka berapa ox suhu benda tersebut?
Penyelesaian:
Diketahui: 40oC = 80ox
20oC = 50ox
Ditanya: 80oC = … ox
Jawab :
img3
(80-40)/(80-20) = (tx – 80)/(tx – 50)
40/60= (tx – 80)/(tx – 50)
4tx – 200 = 6tx – 480
2tx = 280
tx = 140
Jadi 80 oC = 140 ox